Angka Asam Pada Minyak

Senin, 19 November 2012




Bahan pangan yang tersedia di alam tersusun atas unsur kimia seperti karbon (C), hydrogen (H), nitrogen (N), oksigen (O), sulfur (S), phosphor (P), dan lain-lain.  Setiap bahan pangan mempunyai susunan kimia yang berbeda-beda dan mengandung zat gizi yang bervariasi yang banyak jumlahnya. Lemak merupakan suatu kelompok senyawa yang heterogen, tetapi mempunyai kesamaan sifat kelarutannya. Lemak umumnya tidak larut dalam air, tetapi larut dalam pelarut organik seperti eter dan petroleum eter. Berat jenisnya lebih rendah daripada air. Yang tergolong sebagai lemak adalah lemak netral atau trigliserida dan lilin. Sterol, fosfolipid, ester asam lemak dan yang termasuk turunan lemak. Trigliserida adalah bentuk utama lemak, baik di dalam tubuh manusia maupun di dalam bahan pangan. Secara kimia, trigliserida terdiri atas 3 asam lemak yang melekat pada gliserol dan ikatan ester. Lemak (padat) pada umumnya mengandung mengandung asam lemak jenuh (lemak yang berikatan rangkap tinggi, sedangkan minyak (cair) tingkat ketidakjenuhannya tinggi berarti banyak mengandung asam lemak berikatan rangkap sehingga cenderung mudah teroksidasi, kecuali minyak kelapa kandungan asam lemak tidak jenuhnya rendah. Semakin panjang rantai atom karbon asam, akan semakin tinggi ketidakjenuhannya dan sifat fisik asam lemak ini cenderung semakin encer (Widyaningsih, 2004).
Bilangan asam adalah ukuran dari jumlah asam lemak bebas serta dihitung berdasarkan berat molekul dari asam lemak atau campuran asam lemak. Bilangan asam dinyatakan sebagai jumlah milligram KOH 0,1 N yang digunakan untuk mrnrtralkan asam lemak bebas yang terdapat dalam 1 gram minyak atau lemak. Derajat asam adalah banyaknya milliliter KOH 0,1 N yang diperlukan untuk menetralkan 100 gram minyak atau lemak (Ketaren, 2005). Sedangkan menurut Sumardi dan Hardoko (1992) bilangan asam lemak bebas adalah banyaknya basa dalam ml ekuivalen yang diperlukan untuk menetralkan 100 gram contoh yang ditentukan.
Angka FFA adalah indikasi dari jumlah ketengikan hidrolitik kandungan/kadar FFA yang ditentukan dengan titrasi alkali standar. Penentuan angka FFA harus ditetapkan untuk tiap spesies ikan, dimana batas maksimumnya akan berubah-ubah tergantung dalam tiap ikatannya (Bonnel, 1998).


Karakteristik
Minyak kelapa berdasarkan kandungan asam lemak digolongkan kedalam minyak asam laurat, karena kandungan asam lauratnya paling besar jika dibandingkan dengan asam lemak lainnya. Berdasarkan tingkat ketidak jenuhannya yang dinyatakan dengan bilangan iod (iodine value), maka minyak kelapa dapat dimasukkan ke dalam golongan non drying oils karena bilangan iod minyak tersebut berkisar antara 7,5 hingga 10,5 (Ketaren, 2008).
            Minyak kelapa mengandung 84% trigliserida, sterol yang terdapat dalam minyak nabati disebut phitosterol dan mempunyai dua isomer yaitu beta sitosterol (C29H50O) dan stigmasterol (C29H48O). Sterol bersifat sebagai stabilizer dalam minyak. Tokoferol mempunyai 3 isomer yaitu α-tokoferol (titik cair 158-1600C); α, β – tokoferol (titik cair 138 – 140 0C); dan β – tokoferol. (Muchtadi dan Sugiyono, 1992).
                                                                                    
Kandungan jenis minyak kelapa tersusun atas unsure-unsur C, H, dan O. Minyak sawit terdiri atas fraksi padat dan fraksi cair dengan perbandingan yang seimbang. Penyusun fraksi padat terdiri atas asam lemak jenuh, antara lain asam miristat (1%), asam palmitat (45%) dan asam stearat. Sedangkan fraksi cair tersusun atas asam lemak tak jenuh yang terdiri dari asam oleat (39%), dan asam linoleat 11% (Silviana, 2008).
Proses penyaringan minyak kelapa sawit sebanyak 2 kali (pengambilan lapisan minyak jenuh) menyebabkan kandungan asam tak jenuh menjadi lebih tinggi. Tingginya kandungan asam lemak tak jenuh menyebabkan minyak menjadi mudah rusak oleh proses penggorengan karena selama proses menggoreng, minyak akan dipanaskan secara terus menerus pada suhu tinggi serta terjadinya kontak dengan oksigen dari udara luar yang memudahkan terjadinya oksidasi pada minyak  (Sartika, 2009).

Prinsip Metode Analisa
Menurut Herlina (2002) angka asam menunjukkan banyaknya asam lemak bebas yang terdapat dalam suatu lemak atau minyak. Angka asam dinyatakan sebagai jumlah miligram NaOH yang dibutuhkan asam lemakbebas yang terdapat dalam satu gram lemak atau minyak.
            Asam  
Menurut Sudarmadji, et. al., (2007), cara penentuan minyak atau lemak sebanyak 10 -20 gram ditambahkan 50 ml alkohol netral 95% kemudian dipanaskan 10 menit dalam penangas air sambil diaduk dan ditutup pendingin balik. Alkohol berfungsi untuk melarutkan asam lemak. Setelah didinginkan kemudian dititrasi dengan KOH 0,1 N menggunakan indikator phenolphathalein sampai tepat warna merah jambu.
Angka asam
Menurut Widjanarko (1996) lemak atau minyak dilarutkan dalam alcohol 95% dan dipanaskan selama 10 menit diatas penangas air sambil diaduk dan ditutup dengan pendingin balik, setelah dingin asam lemak bebas dititrasi dengan KOH dengan indikator pp sampai merah jambu.
Angka asam

 Lemak dan Minyak
            Lemak merupakan pangan yang berenergi tinggi, setiap gramnya member lebih banyak energi daripada karbohidrat atau protein. Lemak juga merupakan makanan cadangan di dalam tubuh, karena kelebihan karbohidrat diubah menjadi lemak dan disimpan dalam jaringan adipose. Lemak terutama terdiri atas trigliserida tetapi juga mengandung kolestrol, yang diduga mempunyai hubungan dengan penyakit jantung dan asam-asam lemak esensial yaitu linoleat dan asam arakhidonat (Buckle, et al, 2007).
Lemak atau minyak merupakan zat makanan yang penting untuk menjaga kesehatan tubuh manusia. Selain itu, lemak dan minyak juga merupakan sumber energy yang lebih efektif dibandingkan karbohidrat dan protein (Winarno, 2002). Sedangkan menurut Sediaoetama (2008), lemak adalah sekelompok ikatan yang terdiri atas unsur-unsur Carbon (C), Hidrogen (H) dan Oksigen (O) yang mempunyai sifat dapat larut dalam zat-zat pelarut tertentu (zat pelarut lemak) seperti petroleum eter, benzene, lemak, yang mempunyai titik lebur tinggi bersifat padat pada suhu kamar, sedangkan yang mempunyai titik lebur rendah bersifat cair pada suhu kamar.
Lemak dan minyak terdiri dari trigliserida campuran yang merupakan ester dari gliserol dan asam lemak rantai panjang. Angka nabati terdapat dalam buah-buahan, kacang-kacangan, biji-bijian, akar tanaman dan sayur-sayuran. Dalam jaringan hewan, lemak terdapat diseluruh badan, tetapi jumlah terbanyak dalam jaringan adipose dan tulang sumsum trigeliserida dapat berwujud padat atau cair. Hal ini tergantung dari komposisi asam lemak yang menyusunnya. Sebagian besar minyak nabati berbentuk cair karena mengandung sujumlah asam lemak tidak jenuh, yaitu oleat, linoleat atau asam linoleat dengan titik cair yang rendah. Lemak hewani pada umunya berbentuk padat pada suhu kamar karena banyak mengandung asam lemak jenuh misalnya asam polimitat dan stearat yang mempunyai titik cair lebih tinggi (Ketaren, 2008).
Dalam proses pembentukannya, trigliserida merupakan hasil proses kondensasi satu molekul gliserol dengan tiga molekul asam-asam lemak (umumnya ketiga asam lemak berbeda-beda) yang membentuk satu molekul trigliserida dan tiga molekul air.
                                                            O
H2C – OH       HOOCR1           H2C – O – C – R1
                                                                                O
HC – OH      + HOOCR2        HC – O –C –R2           + 3 H2O
                                                               O
H2C – OH       HOOCR3        H2C – O – C – R3
Gliserol                        asam lemak    trigliserida              air
Kalau R1 = R2 = R3 maka trigliserida yang terbentuk disebut trigliserida sederhana (simple triglyceride) sebaliknya berbeda disebut trigliserida campuran (mixed trigliseride) (Sudarmadji, et. al., 2007).

 Hubungan Asam Lemak Bebas dengan Kualitas
            Menurut Ketaren (2008) lema dengan kadar asam lemak bebas lebih besar dari 1%. Jika dicicipi akan terasa membentuk film pada permukaan lidah dan tidak berbau tengik. Namun intensitasnya tidak bertambah dengan bertambahnya jumlah asam lemak bebas. Asam lemak bebas, walaupun berada dalam jumlah kecil mengakibatkan rasa tidak lezat. Hal ini berlaku pada lemak yang mengandung asam lemak tidak dapat menguap dengan jumlah atom 5 lebih besar dari 14 (5 > 14).
Penentuan kualitas minyak (murni) sebagai bahan makanan yang berkaitan dengan proses ekstraksinya, atau ada tidaknya perlakuan pemurnian lanjutan misalnya penjernihan (refining), penghilangan bau (deodorizing), penghilangan warna (bleaching), dan sebagainya. Penentuan tingkat kemurnian minyak ini sangat berhubungan erat dengan kekuatan daya simpanya, sifat gorengannya, baunya maupun rasanya. Tolok ukur kualitas ini termasuk angka asam lemak bebas (Free Fatty Acids atau FFA), bilangan peroksida, tingkat ketegikan dan kadar air (Sudarmadji,et. al., 2007).
Prinsip Kerja Bahan
Indikator PP
            Indikator PP adalah indikator perubahan warna dengan ditandai tepat hilangnya warna merah. Cara pembuatan indikator PP adalah 1 gram Penophatalein dalam 100 ml alkohol
 KOH
            KOH berfungsi untuk melarutkan asam lemak hasil hidrolisa agar mempermudah reaksi dengan basa sehingga terbentuk. Cara pembuatan KOH adalah KOH sebanyak 6,5 gram dilarutkan dalam aquadest hingga 1 L (Sudarmadji, et. al., 2007).

 Minyak goreng merupakan medium penggoreng bahan makanan yang berfungsi sebagai penghantar panas, penambah rasa gurih dan menambah nilai kalori bahan pangan. Sebagai penghantar panas minyak akan mengalami pemanasan yang menyebabkan perubahan fisika-kimia sehingga berpengaruh terhadap minyak tersebut dan bahan yang digoreng (Djatmiko dan Enie, A.B., 1985). Menggoreng bahan pangan merupakan metoda pemasakan bahan pangan (Ketaren, 1986).
 Kerusakan minyak selama proses penggorengan akan mempengaruhi mutu dan nilai dari minyak dan bahan yang digoreng. Pada minyak yang rusak terjadi proses oksidasi, polimerisasi dan hidrolisis. Proses tersebut menghasilkan peroksida yang bersifat toksik dan asam lemak bebas yang sukar dicerna oleh tubuh (Ketaren, 1986).
 Senyawa polimer yang dihasilkan akibat pemanasan yang berulang-ulang dapat menimbulkan gejala keracunan antara lain iritasi saluran pencernaan, pembengkaan organ tubuh, diare, kanker dan depresi pertumbuhan. Selain itu akan timbul rasa tengik akibat oksidasi yang pengaruhnya tidak diharapkan pada bahan pangan yang digoreng. Pengaruh tersebut antara lain mengakibatkan kerusakan gizi, tekstur dan cita rasa (Muchtadi, 1989).
 Indikator kerusakan minyak antara lain adalah angka peroksida dan asam lemak bebas. Angka peroksida menunjukkan banyaknya kandungan peroksida di dalam minyak akibat proses oksidasi dan polimerisasi. Asam lemak bebas menunjukkan sejumlah asam lemak bebas yang dikandung oleh minyak yang rusak, terutama karena peristiwa oksidasi dan hidrolisis (Sudarmadji, 1982).

 Penentuan angka peroksida. Ke dalam erlenmeyer 30 mL dicampurkan asam asetat glasial dan kloroform (3:2), kemudian sampel minyak 5 g dimasukkan ke dalam larutan tersebut. Selanjutnya ditambahkan KI jenuh 0,5 mL dan dikocok sampai jernih. Setelah 2 menit dari penambahan KI ditambah 30 mL akuades. Iod yang dibebaskan dititrasi dengan thiosulfat 0,01N. Pengerjaan blanko dengan cara yang sama hanya tidak menggunakan sampel minyak.
Diketahui bahwa frekuensi menggoreng menyebabkan kenaikan suhu minyak pada akhir menggoreng. Hal ini disebabkan minyak dipanaskan akan terputus ikatan rantai karbonnya, sehingga titik asam minyak menurun. Keadaan ini menyebabkan penerimaan panas oleh minyak menjadi lebih cepat sehingga waktu yang dibutuhkan saat minyak mulai dipanaskan hingga mencapai titik asap menjadi lebih cepat pada frekuensi menggoreng berikutnya. Menurut Winarno(1992) radiasi radiasi energi tinggi, energi panas, katalis logam atau enzim dapat menyebabkan lemak/minyak mudah pecah menjadi senyawa dengan rantai karbon lebih pendek. Sedangkan titik didih dari asam-asam lemak akan semakin meningkat dan bertambah panjangnya rantai karbon asam lemak tersebut.
Frekuensi menggoreng mengakibatkan perubahan sifat fisika minyak, minyak menjadi lebih kental, terdapat bau dan rasa yang tidak diinginkan dan warna minyak menjadi lebih keruh.
 Terjadinya  kenaikan angka peroksida, berarti pada minyak tersebut terjadi reaksi dengan oksigen pada ikatan rangkap dan terjadi reaksi berantai yang terus menerus menyediakan radikal bebas yang menghasilkan peroksida lebih lanjut.


Daftar Pustaka
Gunawan dkk. 2003. Analisis Pangan: Penentuan Angka Peroksida dan Asam Lemak Bebas Pada Minyak Kedelai Dengan Variasi Menggoreng. JSKA.Vol.VI.No.3.Tahun.2003



angka asam





Bahan pangan yang tersedia di alam tersusun atas unsur kimia seperti karbon (C), hydrogen (H), nitrogen (N), oksigen (O), sulfur (S), phosphor (P), dan lain-lain.  Setiap bahan pangan mempunyai susunan kimia yang berbeda-beda dan mengandung zat gizi yang bervariasi yang banyak jumlahnya. Lemak merupakan suatu kelompok senyawa yang heterogen, tetapi mempunyai kesamaan sifat kelarutannya. Lemak umumnya tidak larut dalam air, tetapi larut dalam pelarut organik seperti eter dan petroleum eter. Berat jenisnya lebih rendah daripada air. Yang tergolong sebagai lemak adalah lemak netral atau trigliserida dan lilin. Sterol, fosfolipid, ester asam lemak dan yang termasuk turunan lemak. Trigliserida adalah bentuk utama lemak, baik di dalam tubuh manusia maupun di dalam bahan pangan. Secara kimia, trigliserida terdiri atas 3 asam lemak yang melekat pada gliserol dan ikatan ester. Lemak (padat) pada umumnya mengandung mengandung asam lemak jenuh (lemak yang berikatan rangkap tinggi, sedangkan minyak (cair) tingkat ketidakjenuhannya tinggi berarti banyak mengandung asam lemak berikatan rangkap sehingga cenderung mudah teroksidasi, kecuali minyak kelapa kandungan asam lemak tidak jenuhnya rendah. Semakin panjang rantai atom karbon asam, akan semakin tinggi ketidakjenuhannya dan sifat fisik asam lemak ini cenderung semakin encer (Widyaningsih, 2004).
Bilangan asam adalah ukuran dari jumlah asam lemak bebas serta dihitung berdasarkan berat molekul dari asam lemak atau campuran asam lemak. Bilangan asam dinyatakan sebagai jumlah milligram KOH 0,1 N yang digunakan untuk mrnrtralkan asam lemak bebas yang terdapat dalam 1 gram minyak atau lemak. Derajat asam adalah banyaknya milliliter KOH 0,1 N yang diperlukan untuk menetralkan 100 gram minyak atau lemak (Ketaren, 2005). Sedangkan menurut Sumardi dan Hardoko (1992) bilangan asam lemak bebas adalah banyaknya basa dalam ml ekuivalen yang diperlukan untuk menetralkan 100 gram contoh yang ditentukan.
Angka FFA adalah indikasi dari jumlah ketengikan hidrolitik kandungan/kadar FFA yang ditentukan dengan titrasi alkali standar. Penentuan angka FFA harus ditetapkan untuk tiap spesies ikan, dimana batas maksimumnya akan berubah-ubah tergantung dalam tiap ikatannya (Bonnel, 1998).


Karakteristik
Minyak kelapa berdasarkan kandungan asam lemak digolongkan kedalam minyak asam laurat, karena kandungan asam lauratnya paling besar jika dibandingkan dengan asam lemak lainnya. Berdasarkan tingkat ketidak jenuhannya yang dinyatakan dengan bilangan iod (iodine value), maka minyak kelapa dapat dimasukkan ke dalam golongan non drying oils karena bilangan iod minyak tersebut berkisar antara 7,5 hingga 10,5 (Ketaren, 2008).
            Minyak kelapa mengandung 84% trigliserida, sterol yang terdapat dalam minyak nabati disebut phitosterol dan mempunyai dua isomer yaitu beta sitosterol (C29H50O) dan stigmasterol (C29H48O). Sterol bersifat sebagai stabilizer dalam minyak. Tokoferol mempunyai 3 isomer yaitu α-tokoferol (titik cair 158-1600C); α, β – tokoferol (titik cair 138 – 140 0C); dan β – tokoferol. (Muchtadi dan Sugiyono, 1992).
                                                                                    
Kandungan jenis minyak kelapa tersusun atas unsure-unsur C, H, dan O. Minyak sawit terdiri atas fraksi padat dan fraksi cair dengan perbandingan yang seimbang. Penyusun fraksi padat terdiri atas asam lemak jenuh, antara lain asam miristat (1%), asam palmitat (45%) dan asam stearat. Sedangkan fraksi cair tersusun atas asam lemak tak jenuh yang terdiri dari asam oleat (39%), dan asam linoleat 11% (Silviana, 2008).
Proses penyaringan minyak kelapa sawit sebanyak 2 kali (pengambilan lapisan minyak jenuh) menyebabkan kandungan asam tak jenuh menjadi lebih tinggi. Tingginya kandungan asam lemak tak jenuh menyebabkan minyak menjadi mudah rusak oleh proses penggorengan karena selama proses menggoreng, minyak akan dipanaskan secara terus menerus pada suhu tinggi serta terjadinya kontak dengan oksigen dari udara luar yang memudahkan terjadinya oksidasi pada minyak  (Sartika, 2009).

Prinsip Metode Analisa
Menurut Herlina (2002) angka asam menunjukkan banyaknya asam lemak bebas yang terdapat dalam suatu lemak atau minyak. Angka asam dinyatakan sebagai jumlah miligram NaOH yang dibutuhkan asam lemakbebas yang terdapat dalam satu gram lemak atau minyak.
            Asam  
Menurut Sudarmadji, et. al., (2007), cara penentuan minyak atau lemak sebanyak 10 -20 gram ditambahkan 50 ml alkohol netral 95% kemudian dipanaskan 10 menit dalam penangas air sambil diaduk dan ditutup pendingin balik. Alkohol berfungsi untuk melarutkan asam lemak. Setelah didinginkan kemudian dititrasi dengan KOH 0,1 N menggunakan indikator phenolphathalein sampai tepat warna merah jambu.
Angka asam
Menurut Widjanarko (1996) lemak atau minyak dilarutkan dalam alcohol 95% dan dipanaskan selama 10 menit diatas penangas air sambil diaduk dan ditutup dengan pendingin balik, setelah dingin asam lemak bebas dititrasi dengan KOH dengan indikator pp sampai merah jambu.
Angka asam

 Lemak dan Minyak
            Lemak merupakan pangan yang berenergi tinggi, setiap gramnya member lebih banyak energi daripada karbohidrat atau protein. Lemak juga merupakan makanan cadangan di dalam tubuh, karena kelebihan karbohidrat diubah menjadi lemak dan disimpan dalam jaringan adipose. Lemak terutama terdiri atas trigliserida tetapi juga mengandung kolestrol, yang diduga mempunyai hubungan dengan penyakit jantung dan asam-asam lemak esensial yaitu linoleat dan asam arakhidonat (Buckle, et al, 2007).
Lemak atau minyak merupakan zat makanan yang penting untuk menjaga kesehatan tubuh manusia. Selain itu, lemak dan minyak juga merupakan sumber energy yang lebih efektif dibandingkan karbohidrat dan protein (Winarno, 2002). Sedangkan menurut Sediaoetama (2008), lemak adalah sekelompok ikatan yang terdiri atas unsur-unsur Carbon (C), Hidrogen (H) dan Oksigen (O) yang mempunyai sifat dapat larut dalam zat-zat pelarut tertentu (zat pelarut lemak) seperti petroleum eter, benzene, lemak, yang mempunyai titik lebur tinggi bersifat padat pada suhu kamar, sedangkan yang mempunyai titik lebur rendah bersifat cair pada suhu kamar.
Lemak dan minyak terdiri dari trigliserida campuran yang merupakan ester dari gliserol dan asam lemak rantai panjang. Angka nabati terdapat dalam buah-buahan, kacang-kacangan, biji-bijian, akar tanaman dan sayur-sayuran. Dalam jaringan hewan, lemak terdapat diseluruh badan, tetapi jumlah terbanyak dalam jaringan adipose dan tulang sumsum trigeliserida dapat berwujud padat atau cair. Hal ini tergantung dari komposisi asam lemak yang menyusunnya. Sebagian besar minyak nabati berbentuk cair karena mengandung sujumlah asam lemak tidak jenuh, yaitu oleat, linoleat atau asam linoleat dengan titik cair yang rendah. Lemak hewani pada umunya berbentuk padat pada suhu kamar karena banyak mengandung asam lemak jenuh misalnya asam polimitat dan stearat yang mempunyai titik cair lebih tinggi (Ketaren, 2008).
Dalam proses pembentukannya, trigliserida merupakan hasil proses kondensasi satu molekul gliserol dengan tiga molekul asam-asam lemak (umumnya ketiga asam lemak berbeda-beda) yang membentuk satu molekul trigliserida dan tiga molekul air.
                                                            O
H2C – OH       HOOCR1           H2C – O – C – R1
                                                                                O
HC – OH      + HOOCR2        HC – O –C –R2           + 3 H2O
                                                               O
H2C – OH       HOOCR3        H2C – O – C – R3
Gliserol                        asam lemak    trigliserida              air
Kalau R1 = R2 = R3 maka trigliserida yang terbentuk disebut trigliserida sederhana (simple triglyceride) sebaliknya berbeda disebut trigliserida campuran (mixed trigliseride) (Sudarmadji, et. al., 2007).

 Hubungan Asam Lemak Bebas dengan Kualitas
            Menurut Ketaren (2008) lema dengan kadar asam lemak bebas lebih besar dari 1%. Jika dicicipi akan terasa membentuk film pada permukaan lidah dan tidak berbau tengik. Namun intensitasnya tidak bertambah dengan bertambahnya jumlah asam lemak bebas. Asam lemak bebas, walaupun berada dalam jumlah kecil mengakibatkan rasa tidak lezat. Hal ini berlaku pada lemak yang mengandung asam lemak tidak dapat menguap dengan jumlah atom 5 lebih besar dari 14 (5 > 14).
Penentuan kualitas minyak (murni) sebagai bahan makanan yang berkaitan dengan proses ekstraksinya, atau ada tidaknya perlakuan pemurnian lanjutan misalnya penjernihan (refining), penghilangan bau (deodorizing), penghilangan warna (bleaching), dan sebagainya. Penentuan tingkat kemurnian minyak ini sangat berhubungan erat dengan kekuatan daya simpanya, sifat gorengannya, baunya maupun rasanya. Tolok ukur kualitas ini termasuk angka asam lemak bebas (Free Fatty Acids atau FFA), bilangan peroksida, tingkat ketegikan dan kadar air (Sudarmadji,et. al., 2007).
Prinsip Kerja Bahan
Indikator PP
            Indikator PP adalah indikator perubahan warna dengan ditandai tepat hilangnya warna merah. Cara pembuatan indikator PP adalah 1 gram Penophatalein dalam 100 ml alkohol
 KOH
            KOH berfungsi untuk melarutkan asam lemak hasil hidrolisa agar mempermudah reaksi dengan basa sehingga terbentuk. Cara pembuatan KOH adalah KOH sebanyak 6,5 gram dilarutkan dalam aquadest hingga 1 L (Sudarmadji, et. al., 2007).

 Minyak goreng merupakan medium penggoreng bahan makanan yang berfungsi sebagai penghantar panas, penambah rasa gurih dan menambah nilai kalori bahan pangan. Sebagai penghantar panas minyak akan mengalami pemanasan yang menyebabkan perubahan fisika-kimia sehingga berpengaruh terhadap minyak tersebut dan bahan yang digoreng (Djatmiko dan Enie, A.B., 1985). Menggoreng bahan pangan merupakan metoda pemasakan bahan pangan (Ketaren, 1986).
 Kerusakan minyak selama proses penggorengan akan mempengaruhi mutu dan nilai dari minyak dan bahan yang digoreng. Pada minyak yang rusak terjadi proses oksidasi, polimerisasi dan hidrolisis. Proses tersebut menghasilkan peroksida yang bersifat toksik dan asam lemak bebas yang sukar dicerna oleh tubuh (Ketaren, 1986).
 Senyawa polimer yang dihasilkan akibat pemanasan yang berulang-ulang dapat menimbulkan gejala keracunan antara lain iritasi saluran pencernaan, pembengkaan organ tubuh, diare, kanker dan depresi pertumbuhan. Selain itu akan timbul rasa tengik akibat oksidasi yang pengaruhnya tidak diharapkan pada bahan pangan yang digoreng. Pengaruh tersebut antara lain mengakibatkan kerusakan gizi, tekstur dan cita rasa (Muchtadi, 1989).
 Indikator kerusakan minyak antara lain adalah angka peroksida dan asam lemak bebas. Angka peroksida menunjukkan banyaknya kandungan peroksida di dalam minyak akibat proses oksidasi dan polimerisasi. Asam lemak bebas menunjukkan sejumlah asam lemak bebas yang dikandung oleh minyak yang rusak, terutama karena peristiwa oksidasi dan hidrolisis (Sudarmadji, 1982).

 Penentuan angka peroksida. Ke dalam erlenmeyer 30 mL dicampurkan asam asetat glasial dan kloroform (3:2), kemudian sampel minyak 5 g dimasukkan ke dalam larutan tersebut. Selanjutnya ditambahkan KI jenuh 0,5 mL dan dikocok sampai jernih. Setelah 2 menit dari penambahan KI ditambah 30 mL akuades. Iod yang dibebaskan dititrasi dengan thiosulfat 0,01N. Pengerjaan blanko dengan cara yang sama hanya tidak menggunakan sampel minyak.
Diketahui bahwa frekuensi menggoreng menyebabkan kenaikan suhu minyak pada akhir menggoreng. Hal ini disebabkan minyak dipanaskan akan terputus ikatan rantai karbonnya, sehingga titik asam minyak menurun. Keadaan ini menyebabkan penerimaan panas oleh minyak menjadi lebih cepat sehingga waktu yang dibutuhkan saat minyak mulai dipanaskan hingga mencapai titik asap menjadi lebih cepat pada frekuensi menggoreng berikutnya. Menurut Winarno(1992) radiasi radiasi energi tinggi, energi panas, katalis logam atau enzim dapat menyebabkan lemak/minyak mudah pecah menjadi senyawa dengan rantai karbon lebih pendek. Sedangkan titik didih dari asam-asam lemak akan semakin meningkat dan bertambah panjangnya rantai karbon asam lemak tersebut.
Frekuensi menggoreng mengakibatkan perubahan sifat fisika minyak, minyak menjadi lebih kental, terdapat bau dan rasa yang tidak diinginkan dan warna minyak menjadi lebih keruh.
 Terjadinya  kenaikan angka peroksida, berarti pada minyak tersebut terjadi reaksi dengan oksigen pada ikatan rangkap dan terjadi reaksi berantai yang terus menerus menyediakan radikal bebas yang menghasilkan peroksida lebih lanjut.


Daftar Pustaka
Gunawan dkk. 2003. Analisis Pangan: Penentuan Angka Peroksida dan Asam Lemak Bebas Pada Minyak Kedelai Dengan Variasi Menggoreng. JSKA.Vol.VI.No.3.Tahun.2003



ANALISA ZAT PEWARNA MAKANAN

Senin, 12 November 2012

RHODAMIN B DALAM MAKANAN
PENGANTAR
Rhodamin B merupakan zat warna yang berbahaya yang sering disalahgunakan mewarnai berbagai makanan dan minuman. Rhodamin B demikian juga Methanil Yellow dan Amaranth telah dilarang penggunaannya dalam makanan. Winarno 1989, melaporkan hasil penelitiannya terhadap berbagai jenis minuman rakyat yang termasuk kategori " Sheet Food" dii daerah.
Tanggal 26 Juni 2002 Harian Kompas memuat tulisan mengenaii Makanan Yang Mengandung "Rhodamin B", agar persepsi masyarakat lebih jelas mengenai rhodamin B. Berikut disampaikan informasi seperlunya.
BAHAN PEWARNA SINTETIK
Bahan pewarna makanan terdiri dari dua jenis yaitu yang alami dan sintetik berikut disamping hanya yang sintetik saja. Bahan pewarna sintetik yang telah dihasilkan para ahli kimia berasal dari Coal Tar, yang jumlahnya ratusan. Pewarna sintetik yang juga disebut pewarna buatan, banyak disenangi oleh industri pangan maupun non pangan (tekstil, kulit dan kertas).
Dari ratusan pewarna sintetik tersebut terdapat beberapa bahan pewarna yang bersifat toksik atau racun, bahkan ada yang bersifat karsinogenik (dapat menstimulir timbulnya kanker), Rhodamin B yang berwarna merah adalah salah satunya. Disamping Rhodamin B yang telah dilarang digunakan dalam makanan adalah Amarath (merah) dan Methanil Yellow (kuning).
Ada segi istimewanya zat pewarna tersebut karena murah harganya, mudah larut dan menyebar serta memberi warna cerah yang merata, membuat warna makin lebih menarik, dan menyebabkan warna asli produk yang luntur atau hilang atau berubah selama proses pengolahan.
Sebaiknya para industri makanan menggunakan bahan pewarna alami atau pewarna yang Food Grade tetapi untuk pakar-pakar dengan mudah membedakan Food Grade atau yang beracun apalagi para pedegang makanan jajanan. Jadi ya bila hal itu berulang-ulang terjadi, mohon maklum saja.
Sosialisasi dari pemerintah ke para industri UKM, tidak segampang yang diperkirakan orang. Tetapi kalau penggunaan Rhodamin B masih juga digunakan oleh suatu industri besar yang kerjanya sehari-hari melakukan eksport terasa agak janggal.
Cara analisa Rhodamin B tidaklah sangat sulit, terutama bila masih dalam bentuk asli (belum dicampur) dan agar laboratorium-laboratorium lain juga mampu melaksanakan analisa Rhodamin B. Berikut penulis memberikan beberapa petunjuk singkat, baik cara yang advance maupun yang sangat sederhana.
UJI BAHAN PEWARNA MAKANAN
Di berbagai negara yang maju sebelum zat pewarna sintetik dapat digunakan dalam makanan, harus terlebih dahulu lolos dari berbagai prosedur pengujian.
Test yang harus dijalankan meliputi pengujian kimia, biokimia toksikalogi dan analisis terhadap media tersebut. Bila lolos uji zat pewarna tersebut baru dapat digunakan penggunaannya dalam makanan. Zat pewarna kemudian disebut Permitted Color atau Certified Color atau Food Grade Colouring Agent.
Proses pembuatan zat warna sintetik biasanya melalui perlakuan pemberian asam sulfat dan asam nitrat yang sering kali terkontaminasi oleh logam berat seperti arsen, atau logam berat lain yang bersifat racun. Pada pembuatan zat pewarna organik sebelum mencapai produk akhir harus melalui suatu senyawa antara dulu, yang kadang-kadang berbahaya. Sering kali dalam proses reaksi tersebut terbentuk senyawa baru yang berbahaya yang lebih tertinggal sebagai residu dalam bahan pewarna tersebut.
Setelah lolos berbagai uji dan tes tersebut, zat pewarna yang dianggap aman, ditetapkan bahwa kandungan logam arsen tidak boleh lebih dari 0,00014% dan timbal tidak boleh lebih dari 0,001% sedangkan logam berat lainnya tidak boleh ada.
Di Perdagangan Internasional, informasi detail mengenai zat warna Food Grade dapat dilihat pada dokumen Codex Alimentarius Commission (kunjungi situs CAC : http://www.codexalimemtarius.net) dan di Indonesia peraturan mengenai penggunaan zat pewarna yang diijinkan dan dilarang dalam makanan diatur melalui SK Menteri Kesehatan RI No. 235 Menkes/Per/VI/79 dan yang telah direvisi melalui SK Menteri Kesehatan RI No. 722 Menkes/Per/IXI/80 mengenai Bahan Tambahan Makanan.
Bila pembaca masih ingin penjelasan lebih lanjut berinteraksilah dengan fgw@mbrio-food.com atau www.mbrio-food.com.
RHODAMIN B
Rhodamin B merupakan zat pewarna sintetik yang berbahaya. Rumus kimia Rhodamin B seperti terlihat pada gambar (a) di bawah ini dan absorpsi serta Flourescene Imission Spektra seperti tertera dalam gambar (b).
(a) C28H31N2O3Cl

Toksisitasnya : Termasuk bahan kimia berbahaya (harmful). Berbahaya bila tertelan, terhisap pernapasan atau terserap melalui kulit. Toksisitasnya adalah ORL - RAT LDLO 500 mg Kg-1.
DETEKSI ZAT PEWARNA TEKSTIL
A. TEKNIK ANALISA CANGGIH
Telah diketahui bahwa berbagai jenis makanan dan minuman yang beredar di Indonesia, baik secara sengaja maupun tidak sengaja, telah diwarnai dengan pewarna tekstil atau yang bukan zat pewarna "food grade", yaitu yang tidak diizinkan digunakan dalam makanan. Pewarna-pewarna tersebut memang lebih banyak digunakan untuk tekstil, kertas atau kulit. Seperti telah diketahui, berdasarkan beberapa penelitian telah dibuktikan bahwa beberapa zat pewarna tekstil yang tidak diizinkan tersebut bersifat racun bagi manusia sehingga dapat membahayakan kesehatan konsumen, dan senyawa tersebut memiliki peluang dapat menyebabkan kanker pada hewan-hewan percobaan.
Di laboratorium yang maju, analisis pewarna makanan sudah secara rutin dilakukan, dengan berbagai metoda, teknik dan cara. Sebagian besar dari cara analisa tersebut masih berdasarkan suatu prinsip kromatografi atau pun menggunakan alat spektrophotometer. Cara tersebut digunakan untuk mendeteksi zat pewarna tersebut secara teliti, karena itu minimal diperlukan fasilitas yang cukup canggih serta dituntut tersedianya berbagai pelarut organik, yang biasanya cukup mahal harganya. Di samping itu teknik tersebut juga memerlukan tenaga terampil yang profesional.
(b) Grafik tersebut di atas merupakan molar extinction coefficient Rhodamin B yang dilarutkan dalam etanol.
Molar extinction coefficient Rhodamin B adalah 106,000 M-1cm-1 pada panjang gelombang 542,75 nm.
Berbagai penelitian telah dilakukan untuk mencari beberapa metoda yang praktis tetapi teliti untuk mengidentifikasi adanya pewarna sintetik dan bila perlu dapat membedakan jenis pewarna sintetik dalam makanan. Hal tersebut penting sekali bagi laboratorium pangan, pembuat kebijaksanaan dan organisasi pelindung konsumen agar mempunyai suatu teknik atau metoda analisis yang cepat cara kerjanya dan dapat membedakan antara zat pewarna makanan dengan pewarna tekstil. Teknik analisis tersebut seyogyanya yang cukup sederhana sehingga mudah dilakukan di tingkat rumahtangga dan di lapangan bagi penjual zat pewarna atau penjual makanan. Adanya kebutuhan yang mendesak tersebut juga ditegaskan oleh JECFA.
B. TEKNIK ANALISIS SEDERHANA
Babu & Indushekhar S (1990) dari NIN Hyderabad India, telah melaporkan hasil penelitiannya, bahwa deteksi zat pewarna sintetik dapat dilakukan secara sederhana dengan menggunakan peralatan yang sederhana, seperti gelas, air dan kertas saring. Sehingga tidak diperlukan adanya pelarut ataupun memerlukan tersedianya peralatan khusus. Metoda ini dapat dikerjakan di rumah maupun di lapangan. Keistimewaan atau keuntungan penting dari metoda tersebut adalah karena cara analisisnya tidak membutuhkan ketersediaan zat pewarna-pewarna standar apapun.
Ide dari metoda sederhana ini didasarkan pada kemampuan zat pewarna tekstil yang berbeda dengan zat pewarna makanan sintetis, di antaranya karena daya kelarutannya dalam air yang berbeda. Zat pewarna tekstil seperti misalnya Rhodamin B (merah), Methanil Yellow (kuning), dan Malachite Green (hijau), bersifat tidak mudah larut dalam air. Pada Tabel 1, dapat dilihat daftar beberapa pewarna sintetik yang mudah larut dan tidak mudah larut dalam air.
Sedangkan prinsip kerjanya adalah kromatograph kertas dengan pelarut air (PAM, destilata, atau air sumur). Setelah zat pewarna diteteskan di ujung kertas rembesan (elusi), air dari bawah akan mampu menyeret zat-zat pewrna yang larut dalam air (zat pewarn makanan) lebih jauh dibandingkan dengan zat pewarna tekstil.
Cara kerja analisa ini adalah melarutkan suatu zat pewarna yang dicurigai ke dalam air destilata, sehingga didapat konsentrasi 1,0 mg/ml atau 1 g/l, kemudian larutan tersebut diteteskan (spot) pada +2 cm dari ujung kertas saring yang berukuran 20x20 cm. Selanjutnya kertas saring tersebut dimasukkan ke dalam gelas yang telah diisi air secukupnya (diletakkan 1-1,5 cm dari basar gelas). Air akan terhisap secara kapiler atau merembes ke atas, dan air dibirkan merembes sampai 3/4 tinggi gelas. Kertas saring diangkat dan dikeringkan di udara. Setelah kering, kertas dilipat dua dan dilipat lagi menjadi tiga seperti telihat pada Gambar 1, sehingga terdapat 8 bagian antara spot asli dan batas pelarut. Seluruh analisis ini dapat selesai kurang dari 1,5 jam. Hasilnya zat pewarna tekstil praktis tidak bergerak pada tempatnya.
Tabel 1. Pembagian pewarna sintetis berdasarkan kemudahannya larut dalam air.
No
Pewarna Sintetis
Warna
Mudah larut di air
1
Rhodamin B
Merah
Tidak
2
Methanil Yellow
Kuning
Tidak
3
Malachite Green
Hijau
Tidak
4
Sunset Yelow
Kuning
Ya
5
Tatrazine
Kuning
Ya
6
Brilliant Blue
Biru
Ya
7
Carmoisine
Merah
Ya
8
Erythrosine
Merah
Ya
9
Fast Red E
Merah
Ya
10
Amaranth
Merah
Ya
11
Indigo Carmine
Biru
Ya
12
Ponceau 4R
Merah
Ya

C. KEUNGGULAN
Cara ini praktis untuk mengecek atau mengidentifikasi zat warna dalam kemasan yang akan digunakan untuk mengolah makanan secara spesifik. Bila akan menganalisis zat warna yang terdapat dalam makanan, harus diekstraksi dulu sehingga mendapatkan larutan dengan konsentrasi 1 g/l zat pewarna.
Para teknisi laboratorium dan lembaga konsumen, bahkan siswa SMA serta konsumen awam, kini dapat dengan mudah, cepat dan sederhana mendeteksi zat warna tekstil tersebut, bila diinginkan.
Keunggulan lain dari metoda sederhana ini adalah tidak diperlukannya standar pembanding (kecuali ingin mendeteksi zat pewarna apa). Akan tetapi hasil uji dengan metoda tersebut perlu pula dikonfirmasi lebih lanjut dengan uji yang dikerjakan di laboratorium dengan menggunakan metoda konvensional. Sehingga dapat benar-benar diyakini bahwa bahan pewarna tersebut tidak mengandung dyes tekstil. Hal ini penting karena terkadang hasil penelitian terbaru dapat mencabut ijin pemakaian bahan pewarna tertentu yang sebelumnya tercantum di dalam daftar pewarna yang diijinkan, seperti yang terjadi di India mengenai pemakaian Fast Red E.
Keterangan:
1. Rodhamin, 2. Metanil Yellow, 3. Malachite Green, 4. Brilliant Blue, 5. Indigo Carmino, 6. Sunset Yellow, 7. Tartrazine, 8. Amaranth, 9. Carmoisine, 10. Erythrocine, 11. Ponceau 4R, 12. Fast

DAFTAR PUSTAKA
http://www.mbrio-food.com/article5.htm
 
© -Sagitha- | Designed by Blogger Templates.